skip to main content


Search for: All records

Creators/Authors contains: "Aravena, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We investigate the degree of dust obscured star formation in 49 massive (log10(M⋆/M⊙) > 9) Lyman-break galaxies (LBGs) at z = 6.5–8 observed as part of the Atacama Large Millimeter/submillimeter Array (ALMA) Reionization Era Bright Emission Line Survey (REBELS) large program. By creating deep stacks of the photometric data and the REBELS ALMA measurements we determine the average rest-frame ultraviolet (UV), optical, and far-infrared (FIR) properties which reveal a significant fraction (fobs = 0.4–0.7) of obscured star formation, consistent with previous studies. From measurements of the rest-frame UV slope, we find that the brightest LBGs at these redshifts show bluer (β ≃ −2.2) colours than expected from an extrapolation of the colour–magnitude relation found at fainter magnitudes. Assuming a modified blackbody spectral energy distribution (SED) in the FIR (with dust temperature of $T_{\rm d} = 46\, {\rm K}$ and βd = 2.0), we find that the REBELS sources are in agreement with the local ‘Calzetti-like’ starburst Infrared-excess (IRX)–β relation. By re-analysing the data available for 108 galaxies at z ≃ 4–6 from the ALMA Large Program to Investigate C+ at Early Times (ALPINE) using a consistent methodology and assumed FIR SED, we show that from z ≃ 4–8, massive galaxies selected in the rest-frame UV have no appreciable evolution in their derived IRX–β relation. When comparing the IRX–M⋆ relation derived from the combined ALPINE and REBELS sample to relations established at z < 4, we find a deficit in the IRX, indicating that at z > 4 the proportion of obscured star formation is lower by a factor of ≳ 3 at a given a M⋆. Our IRX–β results are in good agreement with the high-redshift predictions of simulations and semi-analytic models for z ≃ 7 galaxies with similar stellar masses and star formation rates.

     
    more » « less
  2. Abstract

    We present the average rest-frame spectrum of the final catalog of dusty star-forming galaxies (DSFGs) selected from the South Pole Telescope's SPT-SZ survey and measured with Band 3 of the Atacama Large Millimeter/submillimeter Array. This work builds on the previous average rest-frame spectrum, given in Spilker et al. (2014) for the first 22 sources, and is comprised of a total of 78 sources, normalized by their respective apparent dust masses. The spectrum spans 1.9 <z< 6.9 and covers rest-frame frequencies of 240–800 GHz. Combining this data with low-JCO observations from the Australia Telescope Compact Array, we detect multiple bright line features from12CO, [Ci], and H2O, as well as fainter molecular transitions from13CO, HCN, HCO+, HNC, CN, H2O+, and CH. We use these detections, along with limits from other molecules, to characterize the typical properties of the interstellar medium (ISM) for these high-redshift DSFGs. We are able to divide the large sample into subsets in order to explore how the average spectrum changes with various galaxy properties, such as effective dust temperature. We find that systems with hotter dust temperatures exhibit differences in the bright12CO emission lines, and contain either warmer and more excited dense gas tracers or larger dense gas reservoirs. These observations will serve as a reference point to studies of the ISM in distant luminous DSFGs (LIR> 1012L), and will inform studies of chemical evolution before the peak epoch of star formation atz= 2–3.

     
    more » « less
  3. High-redshift dusty star-forming galaxies with very high star formation rates (500−3000 M ⊙ yr −1 ) are key to understanding the formation of the most extreme galaxies in the early Universe. Characterising the gas reservoir of these systems can reveal the driving factor behind the high star formation. Using molecular gas tracers such as, high- J CO lines, neutral carbon lines, and the dust continuum, we can estimate the gas density and radiation field intensity in their interstellar media. In this paper, we present high resolution (∼0.4″) observations of CO(7−6), [CI](2−1), and dust continuum of three lensed galaxies from the South pole telescope – sub-millimetre galaxies (SPT-SMG) sample at z  ∼ 3 with the Atacama Large Millimetre/submillimetre Array. Our sources have high intrinsic star formation rates (> 850 M ⊙ yr −1 ) and rather short depletion timescales (< 100 Myr). Based on the L [CI](2−1) / L CO(7 − 6) and L [CI](2−1) / L IR ratios, our galaxy sample has similar radiation field intensities and gas densities compared to other submillimetre galaxies. We performed visibility-based lens modelling on these objects to reconstruct the kinematics in the source plane. We find that the cold gas masses of the sources are compatible with simple dynamical mass estimates using ULIRG-like values of the CO-H 2 conversion factor α CO , but not Milky Way-like values. We find diverse source kinematics in our sample: SPT0103−45 and SPT2147−50 are likely rotating disks, while SPT2357−51 is possibly a major merger. The analysis presented in the paper could be extended to a larger sample to determine better statistics of morphologies and interstellar medium properties of high- z dusty star-forming galaxies. 
    more » « less
  4. Abstract The high-frequency radio sky has historically remained largely unexplored due to the typical faintness of sources in this regime, and the modest survey speed compared to observations at lower frequencies. However, high-frequency radio surveys offer an invaluable tracer of high-redshift star formation, as they directly target the faint radio free–free emission. We present deep continuum observations at 34 GHz in the COSMOS and GOODS-North fields from the Karl G. Jansky Very Large Array (VLA), as part of the COLD z survey. The deep COSMOS mosaic spans down to σ = 1.3 μ Jy beam −1 , while the wider GOODS-N observations cover to σ = 5.3 μ Jy beam −1 . We detect a total of 18 galaxies at 34 GHz, of which nine show radio emission consistent with being powered by star formation; although for two sources, this is likely due to thermal emission from dust. Utilizing deep ancillary radio data at 1.4, 3, 5, and 10 GHz, we decompose the spectra of the remaining seven star-forming galaxies into their synchrotron and thermal free–free components, and find typical thermal fractions and synchrotron spectral indices comparable to those observed in local star-forming galaxies. We further determine free–free star formation rates (SFRs), and show that these are in agreement with SFRs from spectral energy distribution-fitting and the far-infrared/radio correlation. Our observations place strong constraints on the high-frequency radio emission in typical galaxies at high redshift, and provide some of the first insights into what is set to become a key area of study with future radio facilities, such as the Square Kilometer Array Phase 1 and next-generation VLA. 
    more » « less
  5. ABSTRACT We present Herschel–PACS spectroscopy of four main-sequence star-forming galaxies at z ∼ 1.5. We detect [OI]63 μm line emission in BzK-21000 at z = 1.5213, and measure a line luminosity, $L_{\rm [O\, {\small I}]63\, \mu m} = (3.9\pm 0.7)\times 10^9$ L⊙. Our PDR modelling of the interstellar medium in BzK-21000 suggests a UV radiation field strength, G ∼ 320G0, and gas density, n ∼ 1800 cm−3, consistent with previous LVG modelling of the molecular CO line excitation. The other three targets in our sample are individually undetected in these data, and we perform a spectral stacking analysis which yields a detection of their average emission and an [O i]63 μm line luminosity, $L_{\rm [O\, {\small I}]63\, \mu m} = (1.1\pm 0.2)\times 10^9$ L⊙. We find that the implied luminosity ratio, $L_{\rm [O\, {\small I}]63\, \mu m}/L_{\rm IR}$, of the undetected BzK-selected star-forming galaxies broadly agrees with that of low-redshift star-forming galaxies, while BzK-21000 has a similar ratio to that of a dusty star-forming galaxy at z ∼ 6. The high [O i]63 μm line luminosities observed in BzK-21000 and the z ∼ 1−3 dusty and sub-mm luminous star-forming galaxies may be associated with extended reservoirs of low density, cool neutral gas. 
    more » « less
  6. null (Ed.)
    ABSTRACT We present Gemini-S and Spitzer-IRAC optical-through-near-IR observations in the field of the SPT2349-56 proto-cluster at z = 4.3. We detect optical/IR counterparts for only 9 of the 14 submillimetre galaxies (SMGs) previously identified by ALMA in the core of SPT2349-56. In addition, we detect four z ∼ 4 Lyman-break galaxies (LBGs) in the 30 arcsec-diameter region surrounding this proto-cluster core. Three of the four LBGs are new systems, while one appears to be a counterpart of one of the nine observed SMGs. We identify a candidate brightest cluster galaxy (BCG) with a stellar mass of $(3.2^{+2.3}_{-1.4})\times 10^{11}$ M⊙. The stellar masses of the eight other SMGs place them on, above, and below the main sequence of star formation at z ≈ 4.5. The cumulative stellar mass for the SPT2349-56 core is at least (12.2 ± 2.8) × 1011 M⊙, a sizeable fraction of the stellar mass in local BCGs, and close to the universal baryon fraction (0.19) relative to the virial mass of the core (1013 M⊙). As all 14 of these SMGs are destined to quickly merge, we conclude that the proto-cluster core has already developed a significant stellar mass at this early stage, comparable to z = 1 BCGs. Importantly, we also find that the SPT2349-56 core structure would be difficult to uncover in optical surveys, with none of the ALMA sources being easily identifiable or constrained through g, r, and i colour selection in deep optical surveys and only a modest overdensity of LBGs over the more extended structure. SPT2349-56 therefore represents a truly dust-obscured phase of a massive cluster core under formation. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
  9. ABSTRACT We present Atacama Compact Array and Atacama Pathfinder Experiment observations of the [N ii] 205 μm fine-structure line in 40 sub-millimetre galaxies lying at redshifts z = 3–6, drawn from the 2500 deg2 South Pole Telescope survey. This represents the largest uniformly selected sample of high-redshift [N ii] 205 μm measurements to date. 29 sources also have [C ii] 158 μm line observations allowing a characterization of the distribution of the [C ii] to [N ii] luminosity ratio for the first time at high redshift. The sample exhibits a median L$_{{\rm{[C\,{\small II}]}}}$/L$_{{\rm{[N\,{\small II}]}}}$ ≈ 11.0 and interquartile range of 5.0 –24.7. These ratios are similar to those observed in local (Ultra)luminous infrared galaxies (LIRGs), possibly indicating similarities in their interstellar medium. At the extremes, we find individual sub-millimetre galaxies with L$_{{\rm{[C\,{\small II}]}}}$/L$_{{\rm{[N\,{\small II}]}}}$ low enough to suggest a smaller contribution from neutral gas than ionized gas to the [C ii] flux and high enough to suggest strongly photon or X-ray region dominated flux. These results highlight a large range in this line luminosity ratio for sub-millimetre galaxies, which may be caused by variations in gas density, the relative abundances of carbon and nitrogen, ionization parameter, metallicity, and a variation in the fractional abundance of ionized and neutral interstellar medium. 
    more » « less